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Abstract

How can we measure whether a natural lan-
guage generation system produces both high
quality and diverse outputs? Human evalu-
ation captures quality but not diversity, as it
does not catch models that simply plagiarize
from the training set. On the other hand, sta-
tistical evaluation (i.e., perplexity) captures di-
versity but not quality, as models that occa-
sionally emit low quality samples would be in-
sufficiently penalized. In this paper, we pro-
pose a unified framework which evaluates both
diversity and quality, based on the optimal er-
ror rate of predicting whether a sentence is
human- or machine-generated. We demon-
strate that this error rate can be efficiently es-
timated by combining human and statistical
evaluation, using an evaluation metric which
we call HUSE. On summarization and chit-
chat dialogue, we show that HUSE detects di-
versity defects which fool pure human eval-
uation and that techniques such as annealing
for improving quality actually decrease HUSE
due to decreases in diversity.

1 Introduction

Generating text is a core part of many NLP tasks
such as image captioning (Lin et al., 2014), open-
domain dialogue (Sordoni et al., 2015), story gen-
eration (Roemmele, 2016), and summarization
(Nallapati et al., 2016). However, proper evalu-
ation of natural language generation has proven
difficult (Liu et al., 2016; Novikova et al., 2017;
Chaganty et al., 2018). A good evaluation metric
should not only capture the quality of generation,
but also the diversity of generation, which is espe-
cially crucial for open-ended tasks like dialogue or
story generation.

Human evaluation, which is often viewed as
the gold standard evaluation, captures quality per-
fectly but fails to capture diversity. As an ex-
ample, for language modeling, a model that di-
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Figure 1. HUSE is twice the classification error
of distinguishing reference and generated text repre-
sented as (human judgment, pmodel) pairs. This iden-
tifies samples with defects in both quality (Sharon
has stroke . . .) and diversity (Cleared coach facing
. . .).

rectly plagiarizes sentences from the training set
would pass the human quality bar but would have
zero generalization ability and thus have inade-
quate diversity. On the other hand, statistical eval-
uation—i.e., perplexity on a test set—captures di-
versity, as it ensures a model must have some
probability of generating novel sentences, but per-
plexity provides an inadequate measure of qual-
ity (Theis et al., 2015): modifying a perfect model
by making it incapable of generating just a sin-
gle reference sentence results in infinite perplex-
ity even though the model has near perfect diver-
sity and sample quality. Automatic metrics such
as BLEU (Papineni et al., 2002) and ROUGE (Lin
and Rey, 2004) capture quality better than perplex-
ity but still correlate poorly with human evalua-
tion, the gold standard for judging sample qual-
ity (Novikova et al., 2017; Chaganty et al., 2018);
moreover, these metrics do not capture diversity.

We propose defining the ideal evaluation met-
ric as twice the error rate of the optimal discrimi-
nator that classifies whether a sentence is gener-
ated from the reference distribution or from the
model (Section 2). If a model generates gibberish
(low quality), the optimal discriminator can clas-
sify these accurately as coming from the model.



If the reference distribution contains sentences the
model cannot generate (low diversity), the optimal
discriminator can classify these accurately as com-
ing from the reference.

Unfortunately, the optimal discriminator is un-
available. Human discriminators cannot capture
diversity effectively, and learned discriminators—
e.g., from a Generative Adversarial Network
(Goodfellow et al., 2014) or one trained on human
judgments (Lowe et al., 2017)—are too unreliable
to use as a replacement for human evaluation.

Our key result (Section 3) is that the optimal
classifier depends only on two numbers: the prob-
ability of a sentence under the model and the prob-
ability under the reference distribution. The for-
mer can be computed from the model, and the lat-
ter can be well approximated by human judgment
scores. The resulting two-dimensional space is il-
lustrated in Figure 1. We apply a simple k-nearest
neighbor classifier to this space and define Hu-
man Unified with Statistical Evaluation (HUSE)
as twice the leave-one-out error of this classifier.

We apply HUSE to four natural language gen-
eration tasks (Section 5): language modeling, dia-
logue, story generation, and summarization. First,
we show that human evaluation alone is insuffi-
cient to discriminate model generations from the
references, leading to inflated estimates of model
performance. In contrast, HUSE is able to reveal
gaps between current models and true human per-
formance. We also show that techniques for im-
proving sample quality such as annealing actually
increase distinguishability between the model and
reference due to substantial losses in diversity.

2 Optimal Discriminator

Consider a natural language generation task where
the model is given a context x (e.g., a dialogue
history) drawn from some p(x) and must output a
distribution over possible sentences pmodel(y | x).
We define an idealized evaluation metric based on
whether pmodel is close to a reference distribution
pref, which is generally human-generated.1 Specif-
ically, consider a random variable y drawn from
either the reference or the model based on an indi-

1 While some tasks care only for quality and thus only
require pmodel to place mass on some high quality y, we de-
mand pmodel to place mass on all high quality y. This diversity
is important for open-ended tasks such as dialogue or story
generation.

cator z ∼ Bernoulli(12):

y | x, z ∼

{
pref(y | x) if z = 1

pmodel(y | x) if z = 0.
(1)

Define L∗ to be twice the lowest possible error
over any discriminator f that attempts to deter-
mine z based on x and y:

L∗
def
= 2 inf

f
P[f(x, y) 6= z]. (2)

L∗ measures similarity between pmodel and pref; it
is 0 if pmodel and pref are disjoint and 1 if they are
identical.2

Obstacles. Unfortunately, L∗ is unattainable be-
cause it requires computing the optimal discrim-
inator. In the spirit of the Turing Test, we could
consider using the error rate of a human discrim-
inator fhum as a proxy. However, existing human
evaluation requests sentences judgments one at a
time, resulting in fhum having knowledge of pref
but not pmodel. Thus, fhum is unable to determine
which sentences a model cannot generate.

As a concrete example, suppose pref placed a
uniform distribution over some set S. Without
knowledge of pmodel the most sensible discrimina-
tor is to predict z = 1 (reference) when y ∈ S.
This discriminator achieves the same classification
error of 0.5 for both the perfect model pmodel =
pref and one which can only return a single y ∈ S.
We could try to reveal pmodel to humans by show-
ing multiple samples simultaneously, but this is
expensive – and as we will later see – unnecessary.

Another option is to learn f over an expressive
class of functions such as neural networks on data
sampled from pmodel and pref. This is analogous to
learning the discriminator in a Generative adver-
sarial network (GAN) (Goodfellow et al., 2014)
or an evaluation metric from human judgments
(Lowe et al., 2017). However, as (x, y) are high-
dimensional objects, training a good classifier is
extremely difficult (and perhaps not significantly
easier than solving the original generation prob-
lem). Indeed, learned evaluation metrics do not
generalize very well (Lowe et al., 2017; Chaganty
et al., 2018). Unlike these approaches which seek
to replace human evaluation, our focus will instead
be on combining human and automatic statistical
evaluation to estimate the optimal classifier error.

2 Note that L∗ is a linear function of to-
tal variational distance: ‖pmodel − pref‖TV

def
=∑

x,y p(x) |pmodel(y | x)− pref(y | x)| = (1 − L∗).
See Appendix A.1 for details.



3 Human Unified with Statistical
Evaluation (HUSE)

Our key result is that the optimal discriminator de-
pends on (x, y) only through a two-dimensional
sufficient statistic (Section 3.1), motivating an ap-
proximation which we call HUSE (Section 3.2).
We finish by showing how the various evaluation
metrics relate (Section 3.3).

Firstly, for any feature map φ that maps (x, y) to
φ(x, y) ∈ Rd, define an evaluation score L(φ) to
be twice the error rate of the optimal discriminator
that depends on (x, y) through φ:

L(φ)
def
= 2 inf

f
P[f(φ(x, y)) 6= z]. (3)

Note that the evaluation score L(φ) given by
a feature map φ optimizes over all functions that
depend on φ (3). Thus, the more information φ
contains, the lower L(φ) is. This has two impli-
cations: First, any feature map φ yields an (opti-
mistic) upper bound onL∗, meaning thatL(φ) can
detect when a model is poor but cannot certify that
it is good. Second, adding features to φ can only
improve this bound.

3.1 Two features suffice

Let us consider the following two-dimensional
feature map:

φopt(x, y)
def
= [pref(y | x), pmodel(y | x)] . (4)

From the arguments above, it is clear that
L(φopt) ≥ L∗, but perhaps somewhat surprisingly,
we actually have equality:

Proposition 1. The two-dimensional feature map
φopt achieves the optimal discriminator score:
L(φopt) = L∗.

Proof We compute the true posterior over z
given x, y. Since p(z = 1) = p(z = 0) = 1

2 ,
p(y | x, z = 1) = pref(y | x) and p(y | x, z =
0) = pmodel(y | x), by Bayes’ rule:

p(z = 1 | x, y) = pref(y | x)
pref(y | x) + pmodel(y | x)

.

The optimal discriminator simply predicts z = 1
if pref(y | x) > pmodel(y | x) and z = 0
otherwise. In other words, the decision line is
φopt(x, y)1 > φopt(x, y)2.

3.2 HUSE features
While we can directly compute pmodel(y | x) for
many probabilistic models, pref(y | x) is unattain-
able, so L(φopt) is not computable. However, the
wisdom of the crowds (Surowiecki, 2004; Ungar
et al., 2012) suggests that pooling together the
judgments of many humans can often produce sur-
prisingly reliable estimates of real-world proba-
bilities such as pref(y | x), even if no individual
human is particularly reliable. With this motiva-
tion, we ask Amazon Mechanical Turk workers to
rate a sentence from 1–5 based on how “typical”
it is (see Appendix A.2 for more details). We de-
fine HJ(x, y) to be the average response over 20
crowdworkers. Figure 2 shows that for a language
modeling task on the Reddit corpus,3 HJ(x, y)
strongly correlates with the actual log-frequency
of y in the corpus. The high correlation suggests
that human judgments HJ(x, y) are a good surro-
gate for log pref.
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Figure 2. On the Reddit corpus, human judgment
(HJ) of the “typicality” of a sentence y correlates
strongly (r = 0.92) with its frequency in the corpus,
suggesting that HJ is a good surrogate for log pref.
Error bars at the 90% confidence interval.

In addition, we found that rather than using
the model probability pmodel(y | x) directly as
a feature, normalizing by sentence length len(y)
yielded lower (tighter) scores, and since any fea-
ture map yields a valid upper bound on L∗, we
define the following feature map:

φhuse(x, y)
def
=

[
log pmodel(y | x)

len(y)
,HJ(x, y)

]
(5)

which is used to define the (population) HUSE
score L(φhuse).

3.3 Guarantees derived from HUSE
We now show that the HUSE score satisfies two
nice properties: (i) a model with low HUSE score

3We used the Reddit corpus due to crowdworker famil-
iarity, corpus size, and short average sentence length, which
results in a wide range of sentence frequencies.



must have low optimal classification error (i.e.
HUSE can detect low-quality models) and (ii) a
model with high HUSE score must have high clas-
sification error when using humans as classifiers.

Consider a feature map that only includes hu-
man evaluation: φhj(x, y)

def
= [HJ(x, y)]. Be-

cause φhuse also incorporates human evaluation,
L(φhuse) is always tighter than the human discrim-
inator error L(φhj):

Proposition 1 (Relationship between HUSE, hu-
man evaluation, and optimal scores).

L(φhj) ≥ L(φhuse) ≥ L∗. (6)

Furthermore, the main difference between
L(φhuse) and L∗ is that the former uses HJ(x, y)
and the latter uses pref. But as we argued using
Figure 2, HJ(x, y) is strongly correlated with pref,
so we expect L(φhuse) to be relatively close to L∗.

4 Evaluating models with HUSE

In this section, we show how we can estimate
the population HUSE score L(φ) from finite data
(Section 4.1). We then show how HUSE can
be decomposed into a score that measures qual-
ity (HUSE-Q) and a score that measures diver-
sity (HUSE-D), which allows us to study quality-
diversity tradeoffs (Section 4.2).

4.1 Learning a discriminator

For any feature map φ, we show how to produce
an estimate of L(φ). Fix n contexts x1, . . . , xn.
First, we draw n examples y1, . . . , yn from the ref-
erence distribution pref(y | x), which are usually
human-generated sentences from a test set. We
also draw n examples y′1, . . . , y

′
n from the model

pmodel(y | x) we wish to evaluate. Next, for each
of the 2n examples (x, y), we compute the feature
map φ(x, y), which might involve evaluating the
model probability pmodel(y | x) as well as collect-
ing human judgments HJ(x, y) from crowdwork-
ers.

Finally, we compute the leave-one-out error of
a classifier that tries to predict whether a given ex-
ample (x, y) comes from the reference distribution
(z = 1) or the model (z = 0). The choice of
classifier is not important, but we chose k-nearest
neighbors because it is simple, requires no train-
ing, and can capture arbitrary continuous decision
boundaries. Specifically, we set k = 15 and de-
fine neighbors using L2 distances over the feature

vectors φ(x, y) scaled componentwise to have unit
variance. The overall procedure for computing the
estimate L̂(φ) is formally defined in Algorithm 1.

Algorithm 1 Computing discriminator score

Require: Feature map φ
Contexts x1, . . . , xn
Reference outputs y1, . . . , yn
Model outputs y′1, . . . , y

′
n

1: Construct dataset:

D =
n⋃

i=1

{(φ(xi, yi), 1), (φ(xi, y′i), 0)}

2: L̂(φ)
def
= leave-one-out error of k-NN on D

4.2 Quality-diversity decomposition

We now define the (empirical) HUSE score using
the feature map φhuse:

HUSE def
= L̂(φhuse). (7)

We define the quality component of HUSE
(HUSE-Q) similarly using human judgments
alone:

HUSE-Q def
= L̂(φhj). (8)

Since humans alone can detect quality defects
in a model, any increase in error from removing
pmodel must come from a model’s lack of diver-
sity. Therefore, we define the diversity component
(HUSE-D) as follows:

HUSE-D def
= 1 + HUSE− HUSE-Q, (9)

which implies the decomposition (1−HUSE-D)+
(1 − HUSE-Q) = 1 − HUSE. As long as
the discriminators are non-trivial (obtaining better
than chance performance with sufficient data), all
scores are contained in [0, 1]. Here, HUSE-D = 1
implies that the model suffers no diversity defects,
while HUSE-D = 0 indicates that the examples
could be discriminated perfectly due to a lack of
diversity.

5 Experiments

5.1 Experimental setup

We use HUSE to evaluate three different types of
single-sentence natural language generation tasks:



Method
Summarization Story generation Chit chat dialogue LM
t = 1.0 t = 0.7 t = 1.0 Retrieval t = 1.0 t = 0.7 t = 1.0

HUSE 0.53 0.26 0.06 0.00 0.56 0.49 0.86
HUSE-Q 0.58 0.92 0.15 0.47 0.56 0.92 0.88
HUSE-D 0.95 0.34 0.91 0.53 1.00 0.57 1.02

Table 1. Performance achieved by the best models on the four tasks, as measured by overall goodness-of-fit (HUSE),
sample quality (HUSE-Q) and diversity (HUSE-D). The scale ranges from 0.0 (completely distinguishable) to 1.0
(indistinguishable from reference) where the implied classification error is HUSE/2.

(i) unconditional and high entropy (language mod-
eling); (ii) conditional and high entropy (story
generation, chit-chat dialogue); and (iii) condi-
tional and low entropy (summarization).

In more detail, the four tasks are:

• Summarization: Giganews story to head-
line dataset and the pre-trained model from
Gehrmann et al. (2018).

• Story generation: Last sentence genera-
tion for ROC stories (Mostafazadeh et al.,
2016) using a standard OpenNMT model
with global attention (Klein et al., 2017).

• Language modeling: One billion word
benchmark language model from Jozefowicz
et al. (2016).

• Chit-chat Dialogue: Two-turn chit-chat dia-
logue dataset constructed from Reddit com-
ments and their replies (Appendix A.3). We
train a convolutional model from fairseq
(Gehring et al., 2017).

For each task, we evaluate three standard
schemes for managing diversity-quality tradeoffs.
We exclude beam search since HUSE ≈ 0 due to
its extreme lack of diversity.

• Temperature annealing: for any probabilis-
tic model that generates words sequentially,
we sample a word proportional to p1/t where
p is the model’s distribution and t is the tem-
perature parameter.

• Retrieval: using Apache solr, we retrieve
responses from the training set using the de-
fault BM25 similarity metric.

• Overfitting: models were trained for triple
the number of minibatches necessary to min-
imize validation loss. This forces the model
to aggressively memorize the training set and
increase generation quality.
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Figure 3. Tradeoffs between HUSE-D and
HUSE-Q for various tasks. Closer to the top right is
better, and shaded gray lines indicate HUSE. Gen-
eration mechanisms can trade-off between diversity
and quality but cannot easily increase the underlying
model performance (HUSE).

We selected several schemes for each task based
on whether we expected them to improve either
HUSE-Q or HUSE-D. For cost reasons, we did
not comprehensively measure all combinations of
tasks and generation strategies, but our evaluations
cover the general range of available diversity-
quality tradeoffs.

Finally, we collect human judgments HJ(x, y)
as per Section 4.1 where we query 20 Amazon
Mechanical Turk crowdworkers for typicality rat-
ings on 100 reference and model sentences.

5.2 Overall results

The HUSE scores across the four tasks vary
widely. Table 1 shows that language models are
nearly indistinguishable, with HUSE = 0.86 and
implied discriminator error of 43%.

In contrast, both summarization and dialogue
are highly distinguishable (HUSE ≈ 0.5) with
relatively low quality when sampled from t =
1.0. Human evaluation alone (HUSE-Q) would
suggest that using temperature annealing to em-
phasize high-probability outputs substantially im-
proves the model (t = 0.7). However, we find that
this increase in sample quality comes at the cost
of diversity. Examining the achievable HUSE and
diversity tradeoffs in Figure 3 shows that mech-



T=1.0 T=0.9 T=0.7

Figure 4. The two dimensional classification problem in Algorithm 1 on the summarization task with different
softmax temperatures (three panels). Each point represents a sentence (φhuse(xi, yi)), color is the source of the sentence
(z), shading is the classification confidence of the nearest neighbor classifier.

anisms such as annealing which improve sam-
ple quality actually degrade HUSE due to severe
losses in diversity.

We find that all schemes and models are inad-
equate for story generation on ROC stories. The
original model (t = 1.0) is very easily distinguish-
able by a human (HUSE-Q = 0.15), correspond-
ing to a discriminator error of 7%. The retrieval
models can improve this to HUSE-Q = 0.47, but
this comes at the expense of a catastrophic loss of
diversity. Even the best scheme we found (overfit-
ting the model) could not avoid this tradeoff.

Finally, we observe that directly sampling the
model (t = 1.0) is always diverse. This suggests
that human evaluation is an appropriate evaluation
for systems which are trained to maximize log-
likelihood and generate via sampling.

5.3 Understanding HUSE

Since HUSE is estimated from a two-dimensional
classification problem, we can directly visual-
ize the classification problem to understand the
diversity-quality tradeoffs.

Figure 4 shows φhuse(xi, yi) for the summa-
rization task on both reference (blue square) and
model (red circle) outputs. The shaded areas indi-
cate the decision boundary of the k-nearest neigh-
bor classifier.

At temperature t = 1.0, we find that the clas-
sification boundary is mostly horizontal, imply-
ing that human judgment can distinguish model
outputs from references. However, there exists a
cluster of sentences with high HJ and high pmodel
which are essentially indistinguishable. Examin-
ing the samples in this top-right region reveals that
these are news stories with short headlines such
as “nadal pulls out of sydney international” which
can be reliably generated even at t = 1.0.

At lower temperatures of t = 0.9 and t = 0.7
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Figure 5. Estimates of HUSE are robust to small
test set size, but generally require ≈ 20 replicate
measurements for HJ.

the boundary shifts towards becoming diagonal.
Although the distribution is no longer directly sep-
arable on human judgment, the two distributions
are quite separable with the inclusion of pmodel.
There is no longer a group of un-identifiable points
on the top right, as the model-generated text now
receives noticeably higher pmodel than the refer-
ences.

Using Figure 4, we can identify individual ex-
amples which were correctly and incorrectly clas-
sified based on log p and HJ. Table 2 shows exam-
ples of both quality failures and diversity failures
identified by HUSE. For example, the “Diversity
failure” table shows that the summarization model
does not understand that “front office” is a way
to refer to the president and general manager and
thus assigns very low probability to the reference.
Improving these models on the diversity failures
will require that the model understand these more
subtle paraphrases. We can also identify model
successes, where the model outputs are truly in-
distinguishable from the reference, and those in
which the reference itself is low quality.

5.4 HUSE stability

Recall that HUSE depends on HJ(x, y) which re-
duces noise by averaging over crowdworkers. We
show that depending on the task, fewer replicate



Quality failure log pmodel HJ

Context: two new vaccines have been shown effective against rotavirus, which is responsible for a
half-million infant deaths in poor countries each year, research studies published wednes-
day said.

Model two new vaccines in the poor countries were effective against go-it-alone study says -2.3 2.6

Reference new vaccines for key UNKNOWN virus shown effective -4.0 4.3

Diversity failure
Context: the buffalo bills sacked tom donahoe as president and general manager on wednesday,

fulfilling expectations of a shake-up after another failure to make the national football
league playoffs.

Model bills sack UNKNOWN as president gm and general manager -0.9 4.3

Reference nfl ’s bills shake up front office -5.1 4.3

Model is indistinguishable
Context: us veteran and eight-time grand slam winner andre agassi has withdrawn from this month ’s

australian open due to a nagging ankle injury , his management team announced thursday .

Model agassi bows out of australian open after injury -1.4 5.3

Reference agassi withdraws from australian open -0.3 4.9

Model outperforms reference
Context: israeli prime minister ariel sharon was undergoing an emergency operation thursday after

suffering a massive stroke.

Model sharon undergoing emergency operation -0.8 4.9

Reference timeline of sharon era -4.7 2.9

Table 2. Summarization examples extracted from Figure 4 for the OpenNMT pretrained model (t = 1.0) and
references.

crowdworkers could be used to estimate HJ.
Figure 5 shows the result of subsampling our

original data on 200 sentences and 20 crowdwork-
ers and estimating HUSE. First, we find that using
50 test set examples (Figure 5, left) is sufficient
to give accurate estimates of HUSE. Next, we find
that the necessary replicate count depends heavily
on the task. For easily distinguishable tasks (story
generation), 10 replicates suffice, while less distin-
guishable tasks (summarization) require more than
20 replicates to obtain accurate estimates.

6 Related work

The current state of NLG evaluation. Existing
approaches to NLG evaluation use a mix of quality
and diversity measures. Out of the 26 NLG papers
at ACL 2018, six perform only human evaluation,
fourteen measure human evaluation and a diversity
metric such as perplexity or n-gram diversity, and
six do not even evaluate using human judgments.

While perplexity and n-gram counts can in
principle evaluate diversity, their practical imple-
mentations suffer from serious drawbacks. When
human evaluation and perplexity are both eval-
uated, they are almost always done on separate
models – human evaluations are done on beam-
searched output, while perplexity is computed on
the softmax outputs. This makes it appear as if the

models can simultaneously generate high quality
outputs while also being diverse, when in fact they
can only be one at a time based on whether they
sample or run beam search.

On the other hand, n-gram diversity was pro-
posed by (Li et al., 2016) to combat the generic ut-
terance problem where models repeat phrases such
as ‘I don’t know’. Unfortunately, n-gram diver-
sity is computed across contexts by counting the
number of unique n-grams generated, and so does
not measure a model’s ability to generate multiple
valid utterances at any single context. In partic-
ular, a model which can only output a single ut-
terance per context (e.g., via memorization or re-
trieval) can still have high n-gram diversity as long
as the memorized sentences are unique.

Finally, all existing diversity measures are com-
puted separately from human evaluation. This
results in two incomparable evaluation metrics,
which prevent us from reasoning about tradeoffs
between diversity and quality. In contrast, HUSE
allows us to make precise statements about the
cost of diversity because it is a single metric which
decomposes into diversity and quality terms.

Related evaluations of diversity. The impor-
tance of diverse responses has previously ac-
knowledged for summarization (Nenkova et al.,
2007) and information retrieval (Clarke et al.,



2008). Our work differs in considering a single
evaluation measure that captures quality and di-
versity applicable to any generation task.

Automated metrics based on n-gram overlap
such as BLEU, METEOR, ROUGE (Papineni
et al., 2002; Lavie and Denkowski, 2009; Lin and
Rey, 2004) work well for machine translation but
do not generalize well to domains with a diverse
spectrum of correct responses. While variants
(Sun and Zhou, 2012; Galley et al., 2015; Shima
and Mitamura, 2011) have adapted such metrics
to high entropy generative environments, they are
still significantly inferior to the human judgments
they attempt to mimic.

Caccia et al. (2018) recently examined the di-
versity and quality tradeoffs for different language
model architectures on synthetic datasets. How-
ever, as their approach relies on measuring log-
likelihoods under both the model and reference
distributions, it cannot be applied to real data
where pref is unavailable. Our main conceptual
contribution overcomes this by showing that HJ is
an acceptable proxy for pref.

Sajjadi et al. (2018) also examines diversity and
quality (which they call precision and recall) in
the context of generative image models. How-
ever, they rely on assuming that pref and pmodel
can be estimated accurately using the Fréchet
Inception Distance (FID) (Heusel et al., 2017).
HUSE avoids such assumptions and instead di-
rectly leverages the human judgments HJ, result-
ing in a simple and reliable metric more suitable
for use as a gold-standard.

Estimating optimal classification error. Eval-
uating a model by estimating its optimal classifi-
cation error has been considered by several earlier
works (Olsson et al., 2018; Kannan and Vinyals,
2016; Li et al., 2017; Bruni and Fernandez, 2017;
Bowman et al., 2016). However, these meth-
ods have focused on classifying sentences directly
which is quite challenging to do reliably. In fact,
existing adversarial evaluation methods do not yet
reliably outperform human classification (Kannan
and Vinyals, 2016; Bruni and Fernandez, 2017).
We propose the use of both human evaluation and
model probabilities as part of the adversarial eval-
uation framework, and demonstrate that the re-
sulting classifier reliably outperforms humans and
captures both the sample quality and diversity of a
model.

Distributional divergence estimation. Our
proposed evaluation metric is closely related to
the total variation distance which has been studied
extensively in the distribution testing literature.
It is known that total variation distance estimates
have pessimistic minimax estimation rates in
high dimensions (Balakrishnan and Wasserman,
2017). Our work overcomes this by utilizing
pmodel and an estimate of pref. Other approaches to
distributional testing include the maximum mean
discrepancy (MMD) and Wasserstein distances,
which achieve better rates but at the cost of
relying strongly on a kernel and distance metric
respectively (Tolstikhin et al., 2016; Singh et al.,
2018). Although such divergences are easier
to estimate than the total-variation distance, the
implied convergence rates are still too slow to be
used as a replacement for human evaluation.

7 Discussion

In this paper, we demonstrate that the current gold
standard of human evaluation does not penalize
under-diverse models. To remedy this, we pro-
pose HUSE, a general purpose evaluation which
can be applied to any model for which we can cal-
culate pmodel. HUSE is a upper bound to the opti-
mal classification error of distinguishing reference
and model generated text, and never does worse
than human classification. HUSE leverages both
pmodel and HJ, ensuring that models which have
high HUSE are both high-quality and diverse.

In many ways, our work can be seen as an ex-
tension to the classic Turing Test (Turing, 1950).
Instead of relying on just a human classifier, we
approximate the optimal classifier by adding addi-
tional information about the model through pmodel.

Finally, our work here focuses on natural lan-
guage generation as a distribution matching task,
where the goal is pref ≈ pmodel. However, many
settings may have different goals. In machine
translation (Bahdanau et al., 2015), for example,
a single high-quality output may suffice. Other
tasks may have external measures of model quality
(task oriented dialogue), or there may be a desire
to generate with super human quality (story gen-
eration). In such cases, HUSE can be extended by
constraining the classifier f appropriately for the
task. Given that the current state of NLG has not
yet approached human level generation, we leave
such investigations to future work.
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A Appendix

A.1 Relationship between total variation
distance and optimal discriminator error

This is a standard result, replicated here for com-
pleteness:
Proposition 2. The total variation distance is re-
lated to the optimal discriminator error as fol-
lows: ‖pmodel − pref‖TV = (1− L∗).

Proof Fix any x. Define ay
def
= pref(y | x) and

by
def
= pmodel(y | x). Let S def

= {y : ay < by}
be the y where the pmodel assigns higher proba-
bility than pref, and define A def

=
∑

y∈S ay and

B
def
=
∑

y∈S by be the aggregated probabilities.
On S, the optimal discriminator should return z =
0 (model). This is an error when z = 1, which
occurs with probability 1

2A. Analogously, on the
complement of S, the error probability (when z =
0) is 1

2(1−B). The total contribution to L∗ is thus
A+ (1−B). The rest follows from algebra:

‖pmodel − pref‖TV =
1

2
‖pmodel − pmodel‖1

(10)

=
1

2
[(B −A) + (1−A)− (1−B)] (11)

= B −A = (1− L∗) (12)

A.2 Amazon Mechanical Turk for human
judgments

In order to show that HUSE can be reliably es-
timated even with simple crowdsourcing tech-
niques, we used a single uniform task design
where we asked Amazon Mechanical Turk work-
ers to rate the typicality of a sentence from 0-5.
We defined 0 as invalid (grammatically or factu-
ally incorrect) and 5 as ‘very typical’. HJ(x, y)
is defined as the average score that crowdworkers
assign to a response y given the context x. We
did not perform substantial filtering or qualifica-
tion checks beyond HIT acceptance rate.

We observe that measuring many replicates is
sufficient to get low-variance estimates of HJ. For
easy classification tasks (such as story generation)
we require five to ten replicates, while for hard
tasks such as summarization at least twenty repli-
cates are needed (Section 5.4). Manual inspec-
tion suggests that up to 20% of the collected data

are low-quality but that this noise is uncorrelated
with the sentence being rated and outweighed by a
larger majority of honest and reasonably accurate
data.

A.3 Reddit Dataset
We use a subset of Reddit comments from 2006-
2018 scraped from https://pushshift.io/. We con-
struct a dictionary containing the 10000 most pop-
ular words and preprocess the dataset by remov-
ing deleted posts, out-of-vocabulary tokens, pro-
fanity, comments with less than 10 upvotes, and
comments with over 400 tokens.



Figure 6: Amazon Mechanical Turk survey design for eliciting HJ in the summarization task.


